

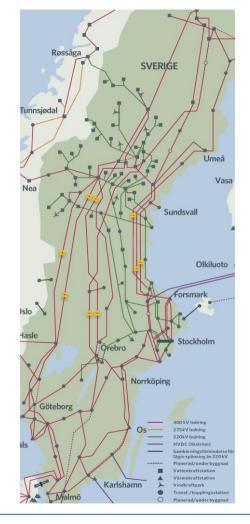
SweGRIDS

Distance Protection of Transmission Lines with **High Levels of Series Compensation**

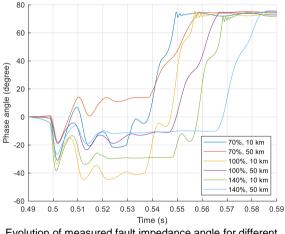
PhD student: Tanbhir Hoq, hoq@kth.se

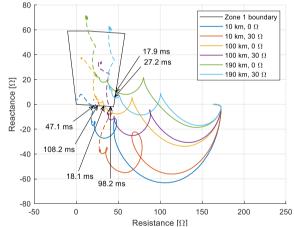
Supervisors: Nathaniel Taylor (KTH), Jianping Wang (Hitachi Energy)

Project funded by:



Background


- Transmission Lines
 - Higher voltage levels
 - Connects generation and distribution
 - High investment infrastructure
 - Typically state owned entity
- Why series compensation?
 - Enhanced power transfer
 - Reduced transmission losses
 - Improved voltage profile
 - Improved transient stability of power system

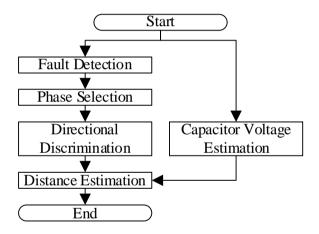


Challenges of Distance Protection

• Understanding the challenges due to high levels of compensation

Evolution of measured fault impedance angle for different compensation levels, for bolted phase-ground fault

Evolution of measured fault impedance for 100% compensation and 0° inception angle



Incremental Quantity Protection (IQP)

Incremental Quantity

$$\begin{split} \Delta V &= V(t) - V(t - nT) \\ \Delta I &= I(t) - I(t - nT) \end{split}$$

Relay Algorithm

IQP Testing

Test Cases

- Fault angle
- Source impedance
- Compensation level
- Fault resistance
- Fault location
- Fault type
- Capacitor location

Outcome

- Fault detection, phase selection, directional discrimination works in all cases
- Distance estimation works well for low fault resistance
- Operation time is around 1/4 cycle

Shortcomings

- Assumption of system linearity
- Issues with higher fault resistance in distance estimation

Thank You!

Questions and Remarks?

hoq@kth.se