

SweGRIDS

On-line diagnostics of reactor and transformer bushings by utilization of overvoltage transients

PostDoc: Gorla Durga Pawan Mahidhar, gorla@kth.se

Supervisor: Hans Edin (KTH)

Reference Group Members: Francisco Penayo (HE), Lars Jonsson (HE), Anders Eriksson (HE), Eskil Agneholm (Ellevio), Niclas Schönborg (SVK), Nima Sadr-Momtazi (HE)

Project funded by:

OHITACHI Energy

Introduction

- The Electric Power System is constantly evolving in size and complexity
- The hazard rate for transformers and reactors is also going up in recent times
- SweGRIDS A significant numbers of transformer and reactor failures is due to bushing failure (about 15-30 % of the cases)
 - **Transient overvoltages** are further increasing the risk
 - Bushings are exposed to various mechanical, thermal and dielectric stresses
 - Moisture and Ageing.
 - Partial discharges due to weakening of insulation.
 - Failure under transient overvoltages.

Moisture ingress, short circuit of capacitance gradings, PD and X-wax, damaged OIP and broken connections

* https://www.hitachienergy.com/offering/product-andsystem/transformers/power-transformers/systemintertie-transformers

Figure 1. Causes of Transformer and Reactor failures. ("Transformer Reliability Survey 642 ", CIGRE Technical Brouchure 2015)

SweGRIDS

Figure 2. Condenser bushings

* https://www.hitachienergy.com/offering/productand-system/transformer-insulation-andcomponents/bushings

Objectives and approach

Current diagnostic methods for bushings

- Capacitance and Dielectric Dissipation factor measurements
- Dissolved Gas Analysis (DGA) for OIP bushings
- IEC 60270 based Partial discharge measurements

All the methods are not online and are performed at intervals

- Online monitoring of the reactors and transformers.
- Transient overvoltages are unavoidable and can be used for diagnosing the bushings for defects
 - Detection of transient overvoltages
 - Continuos partial discharge monitoring to better know the condition after every transient voltage event.
- Usage of non contact sensors and antennas to avoid putting the reactors and transformers out of service

Transient Voltage Monitoring

Figure 3. Methodology and results from the laboratory model

- A highly sensitive, linear and wide band, non contact capacitive based sensor system
- Three phase measurements are complex due to cross capacitance coupling, so a decoupling methodology is also proposed to reconstruct the on 3 phase voltages on conductors

On-field test Results

- An online monitoring system was devised for measurement of three phase voltages.
- A 3 phase, 220 kV, 150 MVAr reactor at the SVK's Hagby substation, Stockholm was monitored continuously to record the transient events that occurred during the operation of reactor.

Conclusions and Further works

SweGRIDS

- Using the non-contact capacitive sensors, the voltages and the transient events can be monitored online with very good accuracy.
- Design and develop Ultra-High Frequency (UHF) antennas for detecting the PD activity in the bushings due to the transient voltages.
- Further onsite measurements involving both the transient voltage and PD monitoring needs to be carried out.
- To model and understand the electric field distribution in the condenser bushings under practically occurring transient voltages.