

SweGRIDS

CP23: Fault location in resonant-earthed MV distribution systems

- PhD student: Md Zakaria Habib, mzhabib@kth.se
- Supervisor: Dr. Nathaniel Taylor (KTH)

Project funded by:

Background & Objective

SweGRIDS

Resonant-earthed systems

- The transformer neutral is connected to the earth through Petersen coil that is tuned to minimize the fault current through the fault location
- Transient faults become self-extinguishing: + good reliability
- Difficulties arise to locate earth-faults: longer downtime

Main objectives

- Study the existing solutions and find their limitations for resonant-earthed system
- Propose a reliable and cost-effective **fault location method** for these systems

Resonant-earthed medium voltage distribution

Proposed solution

SweGRIDS

Method

- If the network is not tuned at the resonant point, the changes in phase-currents due to earth-faults are not equal on the fault passage
- The changes are (ideally) equal if the measurement location is not on the fault passage
- Number of devices are installed along the feeder and each device independently determines that is on the fault passage or not using only current information
- Faulty section is determined after collecting the information from devices

→ Fault current (due to over/under compensation)

Good performance for mixed feeders with both overhead line and underground cables (fault resistance 5 kΩ)

Results (2/3)

Results (3/3)

Conclusions

- SweGRIDS – Traditional fault location methods struggle to provide acceptable performance in resonant-earthed distribution systems
 - The proposed fault location method provides reliable decision in various fault conditions
 - The proposed method should be cost-friendly since it does not require any voltage or high-frequency measurements

